Hydrophilic Mineral Coating of Membrane Substrate for Reducing Internal Concentration Polarization (ICP) in Forward Osmosis
نویسندگان
چکیده
Internal concentration polarization (ICP) is a major issue in forward osmosis (FO) as it can significantly reduce the water flux in FO operations. It is known that a hydrophilic substrate and a smaller membrane structure parameter (S) are effective against ICP. This paper reports the development of a thin film composite (TFC) FO membrane with a hydrophilic mineral (CaCO3)-coated polyethersulfone (PES)-based substrate. The CaCO3 coating was applied continuously and uniformly on the membrane pore surfaces throughout the TFC substrate. Due to the intrinsic hydrophilicity of the CaCO3 coating, the substrate hydrophilicity was significantly increased and the membrane S parameter was reduced to as low as the current best of cellulose-based membranes but without the mechanical fragility of the latter. As a result, the ICP of the TFC-FO membrane could be significantly reduced to yield a remarkable increase in water flux without the loss of membrane selectivity.
منابع مشابه
Thin film nanocomposite forward osmosis membrane prepared by graphene oxide embedded PSf substrate
One of the limiting factors in good performance of forward osmosis (FO) membranes is the internal concentration polarization (ICP). To reduce ICP, thin film nanocomposite forward osmosis (TFN-FO) membranes were fabricated by adding different amounts of graphene oxide (GO) nanoplates (0-1 wt. %) to polymer matrix of polysulfone (PSf) substrate. The prepared nanocomposite membranes exhibited both...
متن کاملPreparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process
Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates' properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high...
متن کاملPerformance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis
Forward osmosis (FO) has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2) and potassium bicarbonate (KHCO3) as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments we...
متن کاملPolyamide Forward Osmosis Membrane: Synthesis, Characterization and Its Performance for Humic Acid Removal
In this research, modification on the ultrafiltration (UF) membrane by synthesis of a thin layer of polyamide selective layer was designed for high performances of forward osmosis (FO) water treatment. Two monomers, m-Phenylenediamine (MPD) and Trimesoyl chloride (TMC) with different concentrations of MPD (2.0% w/v and 1.0% w/v) were reacted with TMC (0.15% w/v) for interfacial polymerization (...
متن کاملA numerical study of the effect of channel spacers on the performance of cross-flow forward osmosis membrane modules
In this paper, we perform two-dimensional simulations of cross-flow forward osmosis (FO) membrane modules in the presence of draw and feed channel spacers. For this purpose, the equations corresponding to the conservation of mass, momentum, and convection-diffusion for the mass fraction of solute are solved using a commercial finite volume flow solver. We consider six configurations of channel ...
متن کامل